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The problem of constructing a control, which maximizes or minimizes the deviation of the first (upper) section of a plane double 
pendulum in one or several half-cycles of oscillations is solved. The angle between the sections, which can be varied within specified 
limits, is considered as the control parameter. Both this angle and its derivative occur in the equations of motion of the system, 
which complicates the solution of the problem. It is possible, by replacement of the variables, to eliminate the derivative of the 
control from the equations. After this, the optimal control is constructed in the form of feedback. The results of numerical 
investigations are presented. © 2001 Elsevier Science Ltd. All rights reserved. 

The problems of controlling oscillatory system has attracted the attention of many researchers. They 
are investigated, for example, in the monographs [1--4]. Considerable difficulties usually arise in 
constructing the control, especially the optimal control, of objects in which the number of control actions 
is less than the number of degrees of freedom (objects with a "deficit" of the number of control 
parameters). Such objects include swings, pendulum systems, and walking mechanisms, in which drives 
are placed only at the hinges between the sections. Animals and humans can also displace "sections" 
of their bodies, but only one with respect to another. However, they do this so that the external forces 
which arise during relative motion -forces of interaction with the surroundings and gravity forces-move 
the body as a whole in the desired way. For example, walking, the running of animals, and the crawling 
of reptiles occurs as a result of friction forces from the supporting surface. Animals "organize" these 
forces in an appropriate way during the relative motion of the parts of the body. A person controls the 
oscillations of swings about the suspension point by displacing himself appropriately. There is no control 
moment at the suspension point. A gymnast swings on a horizontal bar by controlling mainly the angle 
at the hip joint. The moment at the wrist joint is extremely small in this case. In both of the latter cases, 
the person uses the gravity force in an appropriate way. 

The problem of the optimal control of the swinging and damping of swings was investigated in [5]. 
The control parameter, as previously [2-4], was assumed to be the position of a point mass situated on 
them. The equations of motion obtained using the angle and angular velocity of the deflection of the 
swings from the vertical as the phase variables contain both the position and velocity of the point mass, 
in other words, contain the control together with its derivative, which is inconvenient for solving the 
problem of synthesizing the optimal control. The use of the angular momentum instead of the angular 
velocity as one of the phase variables enables one to eliminate the rate of displacement of the point 
mass from the equations of motion and to construct a complete picture of the optimal control synthesis. 

Two problems of the optimal control of the swinging of a double physical pendulum have been 
investigated.:~ In the first problem, the rate of change of the angle between the sections, which is assumed 
to be bounded, is chosen as the control function; this problem is solved using the Pontryagin maximum 
principle. In the second problem, the angle between the sections itself is chosen as the control. In this 
case, the derivative of the angle is not eliminated from the equations of motion, and the necessary 
optimality conditions, by means of which numerical investigations are carried out, are obtained for this 
problem. It is not possible to construct the optimal control in the form of feedback (to solve the synthesis 
problem) without eliminating the derivative of the angle. 

In this paper, when investigating the oscillations of a double pendulum, the angle between the sections 
is taken to be the control parameter, as in the second of the problems mentioned above. Unlike the 
equations of motion of swings, the use of the angular momentum and the angle of deviation from the 
vertical of the upper section of the double pendulum as the phase variables enables us to eliminate 
only the second derivative of the control parameter from its equations of motion. The first derivative 
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can also be eliminated by introducing, instead of the angle of deviation of the upper section, a certain 
new variable, namely, the reduced angle of deviation. After this the problem of synthesizing the optimal 
control both of the swinging and damping of the double pendulum is solved without using the Pontryagin 
maximum principle. 

The problem investigated here is of interest both from the point of view of theoretical mechanics 
and also for modelling the motions of a gymnast on a horizontal bar. Such motions have been investigated 
in a number of publications (see, for example, [6] and the bibliography given there). 

1. THE EQUATIONS OF MOTION 

Consider a plane double physical pendulum, suspended at the point O by an ideal (frictionless) cylindrical 
hinge (Fig. 1). The sections, which are absolutely rigid bodies, are also connected to one another by 
means of a cylindrical hinge at the point D. The axes of the hinges are horizontal and parallel to one 
another. The centre of mass of the first section will be assumed to be situated on the section 0i) .  We 
will denote by m~, Ii, rl, I~, the mass of the first (upper) section, its length OD, the distance of the point 
O to its centre of mass and its moment of inertia about the point O, respectively. Suppose m~, l~, r~, I~ 
are the similar quantities for the second section. We will denote the angle of deviation of the first section 
(segment OD) from the vertical, measured in an counter-clockwise direction, by (p, and we will denote 
the angle of deviation of the second section (the segment connecting the point D to the centre of mass 
of the second section) from the line passing through segment OD by ct. 

We will investigate an idealized control model in which the control parameter is the angle ec between 
the sections, that varies within the following specified limits 

(~nin ~ o~ ~ OCma x (Otmin, (/'max : const. O~nin, Ctma x E (-g, g)) (1.1) 

We will assume that the permissible control is a piecewise-continuous function ix(t) which pertains to 
the range (1.1). We will denote the set of permissible controls by U. 

We will introduce the following dimensionless parameters of the double pendulum: the 
dimensionless time t and the angular momentum K (t* and K* are the corresponding dimensional 
quantities and g is the acceleration due to gravity) 

/ , =  !; 4 _ K =  It m~l~------ f ,  r 2 = 1 7 ,  m 2 - ---;, ! 2 - ~ ,  t = t* K *  *'  ml ml tl ~ Ii ra~l;2a~ 

The expression for the (dimensionless) angular momentum K has the following form: 

K=~(~t)d-~-~+rl(a)d.~; ~(~t )=l l+/2+m2+2m2r2cosa ,  ~(a)=12+m2r2cost~ (1.2) 
at dt 

The expression ~(t~) describes the (dimensionless) moment of inertia of the double pendulum about 
the point O, and hence ~(a) > 0 for all values of the angle ~. 

The equations of motion of the system can be written in the form 

dK / dt = ~((p, ix), ~((p, ix) = -fi sin (p - m2[sin (p + r 2 sin(tp + or)] (1.3) 

O 

Fig. 1 
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- - • t  ~ = - ~ ( O t ) e +  K ~(ot)= rl(ot) (1.4) 
at ~(ot)' ~(ot) 

Equation (1.3) describes the change in the angular momentum of the system due to the effect of the 
moment of the gravity forces. Equation (1.4) is obtained by expanding relation (1.2) with respect to 
the derivative dto/dt. 

When using the angle tO and ct and the angular velocities dtO/dt and dot/dt as the phase variables of 
the system, higher derivatives d2tO/dt 2 and d2ot/dt 2 occur in the equation of motion. By considering the 
angular momentum K as one of the variables we can eliminate these higher derivatives, but the derivative 
d ~ d t  remains. 

In model (1.3), (1.4) we have ignored the friction at the hinge O and the resistance of the surrounding 
medium to the motion of the pendulum. 

2. A NEW VARIABLE - THE R E D U C E D  ANGLE 

Equations (1.3) and (1.4), in addition to the angle t~, also contains its derivative d~dt .  This makes it 
difficult to use the angle Ot as the control parameter and to solve the problem of synthesizing the optimal 
control, which is formulated below in Section 3. 

Note that 

d~ dot _ d(to - F(ot)) + ;(m (2.1) 
~tt dt 

where 

F(ot) = - ~- + A arctg B tg 
(2.2) 

The constant quantitiesA and B are defined as follows: 

A= ! 1 - 1 2 + m 2 ,  B= R , R = f l ( l l + 1 2 + m 2 ) 2 _ 4 m 2 r 2  
R I I + 12 +m 2 +2m2r 2 

In order to get rid of the derivative do~dt, we will introduce, instead of the angle to, the reduced angle 
p, given by the formula (see Eq. (2.1)) 

p = to - F(ot) (2.3) 

The variable (2.3) is introduced so that Eq. (1.4) can be written in the form 

dp= K (2.4) 
at ~(ot) 

A conversion of the variable similar to (2.3) was considered previously in [7]. 
Thus, we will henceforth consider Eqs (1.3) and (2.4) in the variables K andp. Here we will assume 

that, instead of the angle to, Eq. (1.3) contains a quantity calculated from (2.3) by the formula 

to = p + F(ot) (2.5) 

Note that if there is an abrupt change in the angle Ot, the angular momentum K of the system does 
not change (see Eq. (1.3)), like the reduced angle p (see Eq. (2.4)). If there is a sudden change in the 
angle Ot, there will be a sudden change in the angle to, which is calculated using relation (2.5) (see also 
the paper cited in the footnote). 

3. F O R M U L A T I O N  OF THE P R O B L E M  

Suppose we are given the initial state of system (1.3), (2.4) 

p(0) < 0, K(0) = 0 (3.1) 
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If, for example, t~(0) = 0 (both sections lie in one straight line), then, with the initial condition (3.1), 
as follows from (2.5) the angle to(0) < 0. 

We will now formulate the problem of the optimum swinging of the double pendulum: it is required 
to obtain the law of variation of the control parameter t~ in the range (1.1), for which max [p(T)] is 
reached, where T is the first instant of time after the motion begins (at t = 0) when K(T) = 0. We will 
write this formulation of the problem as follows: 

max [p(T)], K(T) = 0, T > 0 (3.2) 

Here and everywhere henceforth the operations max (maximization) and min (minimization) are 
carried out over all values of a in the specified limits (1.1). 

This problem represents a problem of maximizing the reduced angle p in a "half-cycle" of the 
pendulum swing. 

We will formulate the problem of the optimal braking of the pendulum in a half-cycle with condition 
(3.1) as follows: 

min [p(T)], K(T) = 0, T > 0 (3.3) 

When formulating problem (3.2) (problem (3.3)) the initial state (3.1) and the range (1.1) of 
permissible values of the control are assumed to be such that an instant of time T > 0 exists for which 
the angular momentum K(T) vanishes, and a maximum (minimum) of the angle p is obtained. 

Consider the function F(t~) (2.2) and denote by tx* its maximizing argument in the range (1.1), and 
by a ,  its minimizing argument: 

ct* = arg max F(ct), ~, = arg max F(tx) (3.4) 

An extremum of the function F(t~) is reached at one of the boundary points of the range (1.1) or inside 
it. 

We will assume that the control ct°(t), which solves problem (3.2), has been obtained. We will also 
assume that at the end of the control interval t~°(t) - at the instant of time t = T -  the angle tx is equal 
to tx* (3.4), which maximizes the function F(tx). When there is an instantaneous change in the angle ct, 
the anglep remains unchanged, while the angle tO changes abruptly and takes a value given by (2.5). It 
can be shown that the equation 

ot = ~t°(t) when 0 ~< t < 7", o~ = oc* when t = T (3.5) 

maximizes the angle tO(T), i.e. the swing of the first (upper) section of the double pendulum is a maximum 
in the half-cycle. 

Suppose a0(t) is the control which solves problem (3.3); then the equation 

ot = t~0(t) when 0 ~< t < T, ot = tx, when t = T (3.6) 

minimizes the angle tO(T), i.e. the first (upper) section of the double pendulum receives the maximum 
damping in the half-cycle. 

The functions (3.5) and (3.6), generally speaking, have a discontinuity at the point t = T. If 
~* = ~°(T) (tx, = ct0(T)), the function (3.5) (the function (3.6)) at thispoint remains continuous. 

We will now describe a method of constructing the optimal control ~ (t), which solves problem (3.2), 
and the control a0(t), which solves problem (3.3). 

4. THE M E T H O D  OF SOLVING THE P R O B L E M  

The quantity ~(t~) on the right-hand side of Eq. (2.4) is positive for any value of the angle a. Hence, 
the direction, in which the angle p changes (increases or decreases) depends only on the sign of the 
angular momentum K. The direction in which the angular momentum K changes depends, in turn, on 
the sign of the moment of the gravitational forces described (in dimensionless form) on the right-hand 
side of Eq. (1.3). 

Suppose the initial state (3.1) is such that for all values of ct E U the moment of the gravitational 
forces when t = 0 is positive. Then, for any control ct(t) e U the value of K becomes positive at the 
beginning of the motion. We will assume that the angular momentum K remains positive up to a certain 
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instant of time 0, when it again vanishes. Each trajectory in the control t~(t) e U has its own moment 
0. The angle p, as follows from Eq. (2.4), increases strictly monotonically as the time t increases from 
0 t o 0 .  

In the (p, K) plane consider the set V of phase trajectories of system (1.3), (2.4), obtained for all 
ct(t) ~ U and which, at t = 0, emerge from the initial point (3.1) and which end at the instant t = 0 
(each on its own trajectory) on the K = 0 axis. The whose set V -  an integral funnel [8, 9] - is situated, 
by convention, in the upper half-plane (K > 0) of the (p, K) phase plane (Fig. 2). The derivative 
K" = dK/dp is a continuous function of the angle or. Hence, it reaches its maximum and minimum values 
in the range (1.1) for anyp and K. It is obvious that on each phase trajectory of system (1.3), (2.4) 

min K' ~< K' ~< max K" 

We will assume that the solution of system (1.3)(2.4), at each point of which we have the equality 

K' = max K' (4.1) 

exists and the control corresponding to it is or(t) ~ U. Then, the corresponding phase trajectory belongs 
to the set V, and no other trajectory from V can intersect it from bottom to top. Consequently, the 
trajectory on which Eq. (4.1) holds is the upper boundary of the integral funnel V. It can be shown that 
during the motion along this upper boundary trajectory, a maximum ofp  at a finite instant of time is 
reached (when the angular momentum K vanishes). Consequently, this trajectory is the optimum one 
for problem (3.2). 

The lower boundary of the integral funnel V is a trajectory (if such exists) of system (1.3), (2.4), at 
each point of which the derivative K' takes a minimum value with respect to the variable ct 

K'= min K' (4.2) 

During the motion along this trajectory, a minimum of the angle p at the instant when the angular 
momentum K vanishes is reached, and it is the optimal one for problem (3.3). 

5. SYNTHESIS  OF THE OPT IMAL  C O N T R O L  

We conclude from expression (4.1) and Eqs (1.3) and (2.4) that the optimal control ct °, which solves 
problem (3.2), is given by the formula 

et ° = arg max K' = arg max [~(to, t~)~(t~)] (5.1) 

The optimal control t~t0, which solves problem (3.3), is given by the expression (see formula (4.2)) 

ix0 = arg min K' = arg min [~(to, ct)~(tx)] (5.2) 

Before seeking the extrema, we must substitute into (5.1) and (5.2), instead of the angle tO, its 
expression (2.5) in terms o fp  and ct. Formulae (5.1) and (5.2) solve the problem of synthesizing the 
optimal control. They define the quantities tx ° and ~ in the form of functions of the reduced angle p 

a 0 = oc°(p), tx0 = t~o(p) (5.3) 

The quantities tx ° and ct0 obviously do not depend on the angular momentum K. 
Whereas in the problem of the optimal control of swings, the extrema of the corresponding derivatives 

are obtained analytically [5], in this paper they can only be found numerically. 

p(O) p 
Fig. 2 
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We will note some properties of the control Ix0 = IX0(p) (5.1) and of the trajectories corresponding 
to it. 

1. If the trajectory of system (1.3), (2.4) with control (5.1) falls on the axis K = 0, when T > 0, it 
also obviously solves problem (3.2) in the case when not all the integral funnel belongs to the upper 
half-plane of the phase plane. 

2. Suppose (/3, K) is an arbitrary point belonging to the trajectory of system (1.3), (2.4) and (5.1). 
Then,. at the point of intersection of any other trajectory with the straight line p = p the value of 
K<~K. 

3. Suppose that, for a certain initial state (3.1) the angular momentum K nowhere vanishes on the 
trajectory of system (1.3), (2.4) and (5.1) (the pendulum, without stopping, rotates all the time on one 
side). The value of K, reached on this trajectory for each specified value of p, is then the maximum 
possible. 

We will consider the case when in the initial statep(0) > 0, K(0) = 0. If, under these conditions, the 
integral funnel is situated as a whole in the lower half-plane of the phase plane, then, using the same 
arguments as in Section 4, it can be shown that in this case also the optimal control which solves the 
swinging problem satisfies condition (4.1), and the optimal control which solves the damping problem 
satisfies condition (4.2). However, since the trajectories now lie in the half-plane K < 0, control (5.2) 
corresponds to condition (4.1), while control (5.1) corresponds to condition (4.2). In other words, the 
controls (5.3) change places: the control IX0 = IX0(t) becomes the swinging control and control 
IX0 = IX0(p) becomes the damping control. 

Hence, by switching from one control (5.3) to the other, we can swing or damp the double pendulum 
when it oscillates both from right to left and from left to right. We will consider a certain number I of 
half-cycles in each of which the optimal "swinging" control is used. We will assume that in each of them 
the integral funnel is situated as whole in one of the corresponding half-planes and IXmin ~ 0 < Ixmax. 
It can then be shown that the quantity Ipl takes the maximum possible value after l half-cycles. In order 
to maximize the quantity I to ] after l half-cycles, we must put Ix = Ix* or Ix = IX. at the last instant of 
time - at the end of the last half-cycle. It makes no sense to put Ix = or* or Ix = Ix. at the end of each 
half-cycle. When it swings the pendulum can, however, transfer into a state of unceasing rotation on 
one side, similar to the rotation of a gymnast carrying out a "sun" exercise. 

6. N U M E R I C A L  INVE ST IGAT IONS 

The numerical investigations described here were carried out with the following "anthropomorphic" 
values of the parameters [10, 11]: 

m~=38.4kg,  /~=l.19m, r~*=0.77m, 1~=28.72 k g m  2 

m2=26kg ,  /2= lm,  r2*=O.415m, 12=6.3 k g m  2 (6.1) 

These parameters were calculated on the assumption that the first (upper) section is an absolutely rigid 
body consisting of the massive body of a human (a gymnast) and straightened arms. The lower section 
is assumed to be the legs. 

We will put IXrnin = -2rd3 and IXrnin = 0. With these limiting values of the control parameter Ix, we 
are modelling the situation when the gymnast cannot bend backwards and cannot "fold' completely - 
his total folding remains 60 ° . Hence, in the numerical investigations we assume that 

-2~/3 ~< IX ~< 0 (6.2) 

Calculations show that for values of the parameters given by (6.1) the function (2.2) reaches a 
maximum and a minimum at the ends of the range (6.2) 

Ix" = Otmi, = -2~/3, IX. = if-max = 0 

Programs were written for solving Eqs (1.3) and (2.4) with control (5.1) and (5.2). Graphs obtained 
using these programs for the values of the parameters given by (6.1) are shown in Figs 3-8. 

In Fig. 3 we show the optimal control Ix(t) which solves the problem of the optimal swinging of the 
double pendulum after three half-cycles, and the functionsp(t), K(t), and t0(t) corresponding to it. The 
solution shown was constructed for the initial conditions 
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p(0) = -lt/6, K(0) = 0 

(since ix(+0) = 0 then also ~0(+0) = -~/6). The control ct = s°(t), when K > 0, and tx = tx0(t) when 
K < 0. In the first and third half-cycles (when the pendulum moves from left to fight) the optimal control 
is ct = t~°(t), it takes only the limiting values and suffers discontinuities approximately when the angular 
momentum reaches a local maximum or minimum. The control ct(t) also has a discontinuity, of course, 
when the kinetic moment passes through zero. In the second half-cycle (when the pendulum moves 
from right to left) the optimal control is tx = ~( t ) ,  its does not always take its limiting values and changes 
continuously. The differences in the form of the control when the pendulum moves from one side to 
the other are due, in particular, to the fact that the limitations imposed on the control are asymmetrical. 
On the sections of the motion when ct(t) = 0, we have the equality p(t) = q0(t), which agrees with 
Eq. (2.5). Along the other parts the angle p differs from the angle q0 but is "close" to it. The angle qo 
has jumps at the instant when the control ot(t) has a discontinuity. The time when the third half-cycle 
is completed is t = 0 = 10.21 (dimensionless time). The optimal control at the end of the third half- 
cycle ct(0) = ~t* = -2~/3, and hence the angle q0(0) = 1.975 is the maximum possible value after three 
half-cycles (p(0) = 1.698). In Fig. 4 the trajectory of the optimal swinging of the pendulum during three 
half-cycles is shown in the (p, K) phase plane. 

In Fig. 5 we show the optimal control ct(t), which solves the problem of the optimal damping of the 
double pendulum after three half-cycles, and the corresponding functionsp(t), K(t) and qo(t). The solution 
is obtained for the initial conditions 

p(0) = -•/2, K(0) = 0 

and constraints (6.2). The optimal control is t~ = Cto(t), when K > 0, and ~ = tx°(t), when K < 0. As 
follows from a consideration of Fig. 5 
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~(+0) = ¢c* = -2rc/3, tp(+0) =p(0) + F(ct*) =--n/2 + 0.2767 =-1.294 

The control is cx = cx0(t) in the first and third half-cycles (when the pendulum moves from left to right), 
and in certain time intervals it changes continuously, not always taking its limiting values. In the second 
half-cycle (when the pendulum moves from right to left) the optimal control is a = ct°(t), it takes only 
limiting values and has discontinuities approximately when the angular momentum reaches a local 
maximum or minimum. The control cx(t) also has a discontinuity when the angular momentum vanishes. 
When ¢~(t) = 0, we have p(t) = ~0(t), and at the other time the angles p and q0 are not equal to one 
another, but are "close". The time when the third half-cycle is completed t = 0 = 10.06. The control 
at the end of the third half-cycle ct(0 - 0) -- -0.2827 and is not equal to a . ,  since ¢t. = 0. Here the angle 
q0(0 - 0) -- 0.4315 is not the minimum possible value. If, at the instant of time t = 0, the control angle 
tx changes abruptly to a value ct = tx. = 0, the angle q0 will change abruptly. In this case after three half- 
cycles it takes the minimum possible value q0(0) = p(0) = 0.3763. In Fig. 5 we see these abrupt changes 
in the angles ct and 0 at the last instant of time t = 0 = 10.06. In Fig. 6 we show the trajectory of the 
optimal damping in the (p, K) phase plane. 

In Fig. 7 we show the functions tx(t), K(t) and q0(t), corresponding to the swinging of the pendulum 
with the initial conditions 

p (0 )=0 ,  K(0 )=0  

In ¢t(0) = 0, then q0(0) = 0, and in this case both sections of the pendulum drop vertically downwards 
and stay at rest at the initial instant of time. At the instant t = +0, the angle tx abruptly takes the value 
tx* = -2rd3, and simultaneously with this, in accordance with formula (2.5), the angle q0 changes abruptly 
and takes its maximum value of 0.2767 (see Fig. 7). The double pendulum then swings, performing several 
oscillations to one side and the other with the optimal control tx = tx°(t), if K > 0, and cx = tx0(t), if 
K < 0. After several such swings the pendulum changes to a state of constant rotation similar to that 
of a gymnast carrying out a "sun" exercise. In this rotation K < 0 and cx = cx0(t). In Fig. 8 we show the 
motion described above in the (p, K) phase plane. 

7. D I S P L A C E M E N T  OF T H E  D O U B L E  P E N D U L U M  F R O M  T H E  LOW 
TO T H E  H I G H  P O S I T I O N  

We will assume that the value tx = 0 lies inside the range (1.1). In this case, (Xmi n < 0 and (Zmi n > 0. 
Using the optimal control for the swinging of a double pendulum, we construct the control by means 
of which it transfers from the low stable equilibrium position 

to=0,  cx=0 (p=0) ,  K = 0  (7.1) 

when both sections drop vertically downwards, to the upper unstable position 

t0=---n, ¢c=0 (p=_+n), K = 0  (7.2) 

when both sections rise vertically upwards. 
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The pendulum can transfer from position (7.1) to position (7.2) in a finite time, for example, as follows. 
We will denote by Wthe potential energy of the pendulum whenp = -it, tx = O~mi n (q~ = --Tt + F(ff.min)), 
K = 0. Beginning from state (7.1), we will swing the pendulum as shown in Figs 7 and 8, using control 
%(0  and cx°(t) alternately. During the swings, at each actual instant of time t, we calculate what the 
total energy (kinetic plus potential) of the pendulum would be if we put the control angle tx equal to 
tXmm at this instant of time t and kept it there. The pendulum in the "frozen" state, with tx = ff'rnin, rotates 
solely under the influence of the gravity force, like a simple pendulum. The total energy of this simple 
pendulum, which is preserved throughout the motion, is made of potential and kinetic energy. The latter 
is proportional to the square of the angular momentum K of a simple pendulum. Since, when there is 
a sudden change in the angle ~x at the instant of time t, the angular momentum K of the system remains 
the same, the total energy of this simple pendulum is easily calculated. Numerical investigations show 
that this calculated total energy of pendulum during the time t increases without limit, which is natural, 
since there are no damping forces in the system. As soon as this calculated energy becomes equal to 
IV, we put ct = tXmi n. Suppose then that the "frozen" pendulum (the simple pendulum) when cz = O~mi n 
rotates until its angular momentum Kvanishes or, more accurately, until the reduced anglep becomes 
equal to -n. This equality is reached in a finite time. By changing the angle cx from the value ~min to 
zero abruptly at this instant of time, we obtain tp = -Tt, in accordance with formula (2.5). The angular 
momentum K remains equal to zero during this sudden change. Hence, the pendulum is transferred 
to the desired upper unstable equilibrium position in a finite time. The algorithm for controlling the 
displacement of the double pendulum from the lower equilibrium position to the upper position, 
described above, is realized using a program. 

The double pendulum can be transferred in a similar way to the upper equilibrium position with 
tp = +,t  using the control ct = tXmax instead of tx = O~mi n. 

The problem of stabilizing the upper unstable equilibrium position can be solved, for example, using 
linear of the form cx = c lp  + c2Kwith constant coefficients Cl and c2. 

8. C O N C L U S I O N  

It is possible to solve the problem of synthesizing the optimal control of the oscillations of a double 
pendulum using the approach proposed in this paper. In a numerical investigation of any motion of 
the pendulum it is not necessary to solve the boundary-value problem which arises, for example, when 
using the Pontryagin maximum principle. When using formulae (5.1) and (5.2), describing the feedback, 
one only needs to solve the Cauchy problem, whereas to solve the boundary-value problem one needs 
to set up an iteration process. Hence, formulae (5.1) and (5.2) easily enable one to construct a numerical 
solution for any initial conditions and values of the pendulum parameters. Programs, written to solve 
Eqs (1.3) and (2.4) with controls (5.1) and (5.2) enable one to achieve animation. 
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